Gli zeri di un’equazione sono valori che possono essere sostituiti in per la variabile nell’equazione per produrre un valore di zero . Ad esempio , -1 è uno zero di X ^ 2 + 2x + 1 perchè ( -1 ) ^ 2 + 2 ( -1 ) + 1 = 1 – 2 + 1 = 0 Un termine meno confusione per questi valori è ” radici . ” Una equazione cubica è un polinomio di grado tre; questo significa che un polinomio in cui il più grande esponente è tre . Una equazione cubica avrà tre radici , anche se due di loro possono essere complex.Things che ti serviranno
calcolatrice grafica
Mostra Altre istruzioni
1
Grafico dell’equazione cubica . I luoghi dove la curva graficamente attraversa l’asse X indica una radice reale . Se ci sono le radici complesse , vengono sempre a coppie , quindi se l’equazione cubica ha radici complesse , ci saranno due radici complesse e una radice reale . Se c’è una doppia radice , come X ^ 3 + x ^ 2 – X – 1 = (X – 1 ) . ( X + 1 ) ^ 2 , la curva graficamente toccherà l’asse X in un punto
2
usare il primo e l’ultimo numero nell’equazione cubica di generare fattori di candidati. I fattori che hanno le stesse radici come il cubo e sono molto più facili da risolvere . I primi e gli ultimi numeri dei fattori saranno i fattori del primo e l’ultimo numero del cubo . Ad esempio , il primo numero X ^ 3 – 7X – 6 è 1 – il coefficiente di X ^ 3 – che ha un solo fattore : 1 L’ ultimo numero è 6 che ha elementi 1 , 2 , 3 e 6 . I fattori candidati sono X – 1 , X + 1 , X – 2 , X + 2 , X – 3 , X + 3 , X – 6 e X + 6
3
Prova ciascuno dei fattori candidati a vedere quale dei fattori dividere il cubo senza lasciare un residuo . Per il cubo X ^ 3 – 7X – 6 troviamo che X ^ 3 – 7X – 6 = ( X + 1 ) ( x + 2) ( x – 3 ) . Le radici del cubo sono uguali alle radici dei fattori – le soluzioni delle equazioni X + 1 = 0 , X + 2 = 0 e X – 3 = 0. Le radici sono -1 , -2 e 3 .